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EVALUATION

The new general mathematical framework described in the report provides
a basis for extending many existing 'digital" decoding techniques into
"multiplicative" decoding techniques which can be applied directly to the
unquantized received word. Within the framework an optimal decoder was
formulated--optimal in the sense that it provides the minimum symbol error
rate possible from the received word. In practice, except for short
codes, one almost always needs to back off from such a formulation to reduce
complexity. Fortunately, at least in the,'"additive'" domain, extreme re-
ductions in complexity are often possible which do not significantly impact
performance. The preliminary results obtained indicate a similar trend
in the "multiplicative" domain.

The significance of the results and some possibilities for future
application of the results are indicated in Section 5. Work during the
remainder of the effort will focus upon obtaining the tradeoffs among
performance, decoding time and hardware complexity as indicated in Section
5.

The utilization of coding in various communication applications is
increasing as decoding complexity decreases. The recent Troposcatter
Interleaver Contract F30602-74-C-0133 demonstrated the usefulness of
coding for high speed tropo applications. An on-going contractual effort
F30602-76-C-0361 titled, Demod/Decoder Integration indicates very significant
performance gains are also attainable on high speed microwave line-of-~sight
channels. The results to date under this effort provide a basis for extending
from hard decision decoders to decoders which utilize soft decisions. While
additional devel~ aental work is required, the results should be useful in
the eventual deveiopment of powerful practical decoders.

s A il

FREDERICK D. SCHMANDT
Project Engineer




Section 1

INTRODUCTION

This report presents the most recent results of an inves-
tigation into the complexity of decoding error-correcting codes
and the development of efficient and practical decoding tech-
niques. For earlier results, the reader is referred to
Technical Report RADC-TR-74-297, "Decoding Complexity Study",
November 1974.

A major objective of this continuing research is to demon-
strate that error-correcting codes are capable of providing
reliable data transmission in a wide range of applications at a
reasonable cost. We are convinced that the key to widespread
application of coding lies in understanding and exploiting the
laws that govern the trade-off between code performance and
decoder complexity.

It is intuitively clear that the complexity of decodina
increases ever more rapidly as the upper limit in performance is
approached. Because of the steep slope of the performance-
complexity curve as it approaches the performance limit, we are
guite willing to suffer a small reduction in performance for
the large reduction in complexity that should result. The pro-
blem is to make sure that the full reduction in complexity paid
for by the loss in performance is actually obtained.

A logical approach to this problem would be to determine

the optimum performance-complexity trade-off and then devise




techniques which approach or achieve this ideal. Unfortunately,
we do not yet have a Shannon-type result which tells us,
quantitatively, just how well we can expect to do. However,
this does not prevent us from invoking general principles to de-
duce properties that a coding system would have to have in order
to occupy a position near the theoretical performance-complexity
curve. Consideration of such properties led to the formulation
of the following three heuristics:
Rule 1: Do not impose any restrictions on a code
beyond those necessary to obtain a given
decoding advantage.
Rule 2: Make sure that the decoder fully utilizes
any restrictions that are placed on the code.
Rule 3: Do not impose any restrictions on the decoder
beyond those necessary to obtain a given
decoding advantage.
Application of Rule 1 to the class of finite-geometry codes
resulted in the development of several classes of generalized
finite-geometry codes which achieve significantly improved code
performance for the same decoding complexity(1-3). Application
of Rule 2 to traditional majority decoding methods for cyclic
codes resulted in the discovery of a new decoding algorithm
which achieves the same code performance, but with a drastic
reduction in decoder complexity(4_7). The research carried out

most recently was suggested by the application of Rule 3 to the

question of whether the performance lost by hard-decision




demodulation is justified by the reduction in decoder complex-
ity(8—14)

In a digital communication system with one level of coding
(modulation-demodulation), it is natural to design the demod-
ulator to make hard 0-1 decisions in such a way that the
probability of bit error is minimized. However, when a second
level of coding (error-control encoding-decoding) is added, this
demodulation strategy is no longer appropriate. In a communi-
cation system using two-level coding, the transmitted bit stream
must satisfy known algebraic constraints. To make hard 0-1
decisions without regard to these constraints is to throw away
information and degrade the performance of the system. This
situation was tolerated for a time because it was thought that
the loss in performance at the output of the demodulator was
justified by the simplicity of the digital decoder that followed.
This has come into question, however, and there have been many
proposals for reducing this performance loss through "soft"
demodulation followed by an "extended" decoder which has been
modified to take advantage of the additional information pro-
vided by the demodulator.

It is natural to assume that when soft demodulation followed
by an extended decoder is employed, the complexity of decoding
will increase significantly. This would mean that the
communication system designer would have to choose between two
alternatives: (1) accept the information loss inherent in hard

demodulation but use a powerful code and an efficient digital



algorithm to achieve a net performance gain, or (2) use a weak
code and/or an incomplete decoding algorithm, but achieve the
same net gain by eliminating the information loss at the output
of the demodulator. In the spirit of questioning all assump-
tions about the relationship between code performance and decod-
er complexity, we applied heuristic Rule 3 and asked ourselves
the following question: Does decoder complexity really increase
drastically if we remove the restriction that the decodecr be
digital?

In the course of studying the previous approaches to soft-
decision decoding, we became aware of a curious fact. The two
best known techniques, correlation decoding of block codes and
Viterbi decoding of convolutional codes, although almost always
used to decode linear codes, make no essential use of the linear
property. This seemed to us to be a violation of our heuristic
Rule 2, so we concentrated on the question of how the algebraic
structure of a linear code might be exploited in soft-decision
decoding. Posing the question in this way resulted in a break-
through to a new area of coding theory which we are now
exploring. We have found that by using a new representation of
finite fields, classical digital decoding techniques can be
translated directly into soft-decision decoding algorithms.

This strongly supports the thesis that decoder complexity does
not increase drastically if we remove the restriction that the
decoder be digital. Furthermore, the properties of the new

algebraic framework allow consideration of new approaches to




decoding which are inapplicable in the classical digital domain.

Within this new mathematical framework, in which finite-
field algebra, combinatorics and the theory of continuous
functions interact in a natural way, digital decoding and analog
demodulation become special cases of a more general class of
decoding-demodulation functions. This means that the tradi-
tional approach of treating error-control coding as a digital
add-on to the inherently analog modulation-demodulation channel
may now be superseded by an integrated approach in which de-
modulation-decoding is viewed as a single unified signal pro-
cessing function. We are sure that the ability to integrate the
decoding and demodulation functions will have great impact on
the design of future high-performance communication systems.

In Section 2, we discuss the new general algebraic frame-
work which provided the context for most of the work reported
herein. The major effort within this context has been the
development of analog threshold decoding algorithms and the
results of that effort are reported in Section 3. Section 4
presents some preliminary results of a study of parity check
set construction methods for weighted majority decoding of lin-
ear block codes. Conclusions and suggestions for further

research are contained in Section 5.




Section 2

ALGEBRAIC ANALOG CODING

The past twenty~five years has seen the growth of one of
the most elegant and esoteric branches of applied mathematics:
algebraic coding theory. Areas of mathematics previously
considered to be of the utmost purity have been applied to the
problem of constructing error-~correcting codes and their
decoding algorithms (to the point where the very concept of

"pure mathematics” has become blurred(ls))

. Yet in spite of
the impressive theoretical accomplishments, very little alge-~
braic coding has be a -'ut into practice.

We believe that a major reson for this is that communica-
tion system designers tend to view algebraic coding as an overly
fancy digital add-on to an inherently analog modulation-
demodulation system, and that coding is more trouble than it is
worth. Anyone who has attempted to improve the performance of
an existing communication system by adding a level of error-
control coding can certainly sympathize with this feeling. It
is becoming increasingly clear that the best way to achieve
widespread acceptance of algebraic coding is to integrate it
with the modulation-demodulation system from the start.

That modulation-demodulation and encoding-decoding are
simply two aspects of the overall signal design - signal pro-
cessing problem is widely recognized now, and the desirability

of a unified approach is apparent(lsj. The modulation-
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demodulation and encoding-decoding systems cannot be designed
independently of one another without incurring a performance
loss. The major problem occurs at the receiving end of the
system when there is a mismatch between the demodulator and the
decoder. The solution, clearly, is to merge the demodulation
and decoding functions and design an optimum integrated decoder-
demodulator. But here we run into an apples-and-oranges
mathematical modelling problem.

Consider the familiar situation in which a code word of an
(n,k) linear binary error-correcting code is transmitted over a
time-discrete memoryless channel. We may consider the channel
to be a device which adds, as vectors of real numbers, an
error vector to the modulator's representation of the code word.
The code word was selected from one algebraic domain, the
n-dimensional vector space over the finite field GF(2), and
the error vector from another algebraic domain, the n-dimensional
vector space over the real numbers R. An apple has been added
to an orange. This poses a difficult problem at the receiver:
In what domain do we prcocess the word received at the output of
the channel?

One approach is to force the error vector into the alge-
braic domain of the code by hard-decision demodulation. The
guantized error-vector may then be viewed as a 0-1 vector which
has been added, modulo 2, to the transmitted 0-1 code word, and
all of the techniques of finite-field algebra, number theory

and combinatorics may be employed in the design of the decoder.



We might call this the digital decoding approach. Virtually all
of classical algebraic coding theory is predicated on this model.
But as pointed out above, this approach is unsatisfactory from a
practical point of view because of the information loss at the
interface between the hard-decision demodulator and the digital
decoder.

An alternative approach, which we might call probabilistic
decoding, is to treat the code word as if it came from the
algebraic domain of the error vector. 1In this case, the algebra-
ic properties of the code (linearity, number-theoretic propert-
ies, etc.) are simply ignored. The signal processing is done
entirely in the error vector domain. Two well-known examples of
this approach are correlation decoding of block codes and

Viterbi decoding(l7)

of convolutional codes. Both methods are
normally used to decode linear codes, but neither method makes
any essential use of the linear property. This approach is
satisfactory only for low rate or short codes.

A third approach is to attempt to exploit both algebraic

domains by combining digital and probabilistic decoding.

Examples of such hybrid decoding schemes are: Wagner decoding(la),
generalized-minimum-distance decoding(lg), weighted-erasure
(20)

decoding and decoding with channel-measurement information

(21)
Although these schemes show improvement over strictly digital or
strictly probabilistic decoding in many instances, one gets the

impression that the apples-and-oranges problem remains unresolved.

As a result of surveying the existing decoding techniques,




it occurred to us to ask whether anything could be done about
the apparent incompatibility between these two algebraic do-
mains. Clearly, nothing can'be done about Mother Nature's error
vector domain, but what about the man-made algebraic domain of
the code? This line of inquiry led to the discovery of a more
general algebraic domain in which the analog error vector and
the digital code word co-exist in a natural way. This is
achieved through the use of a new representation of finite
fields which we will now describe. For simplicity, we restrict
our discussion to fields of prime order. The extension to fields
of prime-power order is straightforward.

The finite field of p elements, GF(p), is usually represent-
ed by the ring of integers mod p. We will call this the
"additive representation" of GF(p) and denote it by
S = <5, &, ©> where S = {0,1,...,p-1}, and "®" and "O@" are
modulo p addition and multiplication. The new representation of
GF(p) , which we call the "multiplicative representation", will

be denoted by S' = <§', -, #*> where S' = (1, a, a2,...,aP71}

is
th ; o : ; ;
the set of complex p roots of unity, "." is ordinary multipli-

cation of complex numbers, and "*" is a new operation defined by

loguu
u*ve=y
’

where the principal value of the logarithm is taken. To show
that S' is indeed a representation of GF(p), it is necessary
only to establish the existence of an isomorphism from S to S'.
Thus let f be any function from S to the complex numbers C such
that for all i ¢ S, £(i) = al. It is easy to verify that f is

9




such an isomorphism.

The important point is that the operations "." and "*" of
the multiplicative representation of GF(p) are defined for all
nonzero elements of C, not just the pth roots of unity.l We
have thus constructed a general algebraic system <C, +, -, *>
which contains the multiplicative representation of GF (p).
Every algebraic equation that can be written in the classical
S-domain can be translated directly into an equivalent equation
in the S'-domain. But once in the S'-domain, the algebraic
equation extends immediately to non-digital arguments (i.e.
arguments which are not restricted to be pth roots of unity).
This will be discussed in the next section, but we can give
a simple explanation here. In conventional digital decoding of a

linear (n,k) code, a parity check is defined by

n
s;. = ¢ h,. r. (mod p)
i jo1 13 74
where (rl....,rn) is the received word and (hil""'hin) is a

word in the dual code. It is assumed here that r, e S for, if
not, the algebraic operations are not defined. The corresponding

equation in the S' domain is

n
s; = n hi.*r}
T oaey 1373

1There is a technical difficulty with the definition of z*

when we allow Z to be complex if we require that all of the
usual laws of exponents hold (which in our development we do
not,. For a discussion of this point, see A. M. Gleason,
"Fundamentals of Abstract Analysis," pp. 324-326, Addison-
Wesley 1966.

10




(where hij = a ij, etc.). If the rs are pth roots of unity,
then there is nothing new. But the r; need not be so restricted.
The 2lgebraic operations are still defined when the r3 are any
nonzero complex numbers. This means that any conventional
"additive" digital decoder can be translated into a correspond-
ing "multiplicative" decoder and then applied directly to the
raw, unquantized received word. The question, of course, is:
how well does this work? As will be seen in the next section,
it can work surprisingly well, but we know far too little at
this time to make any more specific statements. We are in the
somewhat embarrassing position of having a variety of new
demodulation-decoding techniques which work remarkably well,
but which we understand only marginally. We are currently
investigating such problems as interpreting the meaning of the
syndrome when the digital restriction is removed, and determin-
ing how many "multiplicative" parity checks are required to
specify a code in this more general domain. We are studying
the interaction of probabilistic, algebraic and combinatorial
mechanisms in an effort to find the proper viewpoint from which
to make sense of it all. To date, the best insights have come
through the use of abstract harmonic analysis (group characters,
finite Fourier transforms, etc.). At this point we know that
all of classical algebraic coding theory can be translated

from the additive domain into the multiplicative domain, and

that once ir this new domain a bewildering number of analog

11




processing extensions become possible. The extension which we

are exploring currently is discussed in Section 3.
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Section 3

ANALOG THRESHOLD DECODING

3.1 1Introduction

Majority logic decoding and the more general threshold
decoding constitute widely studied areas of algebraic coding

b8 Fedd=ul Majority decoding usually takes the form of

theory
a symbol-by-symbol decoding algorithm for linear block or
convolutional codes. Most majority algorithms make strong use
of both the linearity of the code and any special combinatorial
structure the code may have. Because of the principal investi-
gators' familiarity with the area, majority decoding was the
first technique to be translated into the multiplicative domain
and extended to analog processing of the unquantized received
word. (Actually, the discovery of the multiplicative extension

v predateé the discovery of the general

(29)

of majority decoding
multiplicative algebraic domain.) Following Massey we
call this extended decoding method "analog threshold decoding".
In the previous section, we pointed out that any function £
which, for all 1 ¢ S, maps i * ui is an isomorphism from S, the
additive representation of GF(p), to S', the multiplicative
representation of GF(p). One way to convert an additive digital
decoder to a multiplicative analog decoder is to physically
implement the function f and apply it to the output of the

channel. Our first experiment along thesz lines involved a

majority decoder for a linear binary block code transmitted

13




over a time-discrete memoryless channel. The initial choice
for the isomorphism f was f(x) = cos nx. (In the binary case,
a =-=1, $S= (0,1} and S' = {1,~1}).

In conventional one-step majority decoding, the unquantized
received word (rl,...,rn) is converted to a 0-1 vector
(ul,...,un) by hard-decision demodulation, various modulo 2
parity check sums involving the {ui} are computed and an estimate
of cyr the ith transmitted code digit, is obtained by majority
decision on these sums. In analog threshold decoding, the
received word (rl,...,rn) is converted to a real-valued vector
(COSnrl,.,.,COSnrn), the corresponding parity check products
involving the {cosnri) are computed, and the estimate of <5 is
obtained by thresholding on the sum of these products.

The reader might well ask at this point why anyone would
choose the function cosn to be the isomorphism from S to S'.

A periodic "soft-decision" demodulation function hardly makes
sense from a communication system designer's point of view.

The reasons for this choice are of historical interest only and
it is certainly true that cosm would never be used in practice.
However, it is also true that cosm works surprisingly well, and
that it is a convenient function to work with from a
theoretician's point of view (i.e., theorems can be proved).

In order to talk about the performance of an analog
threshold decoder, we have to define error-correcting
capability over the real numbers R. The natural distance

N, £ : B "
measure over R is the Euclicean metric, anf it is easily

14




verified that a binary (n,k) code with minimum Hamming

distance dH has minimum Euclidean distance dE = VdH. We say

that a decoding function is a nearest-neighbor decoding rule

if it maps a received vector onto a nearest word in the code,

and a radius-r decoding rule if it maps a received vector onto

a nearest word in the codz whenever the vector is within

Euclidean distance r of a code word. The maximum radius possible
d

without having overlapping spheres is r = —E, and a decoding

function which achieves this radius is called a maximum-radius

decoding rule. (Note the obvious analogy with t-error-correction

in digital decoding.)

Using the demodulation function cosn, we were able to prove
the following results for linear binary block codes(a). First,
a one-step orthogalizable code of minimum Hamming distance
dH can be maximum-likelihood decoded by a one-step analog
threshold decoder using at most dH parity check products.
Second, a Hamming code of length n = 2™-1 can be maximum-radius
decoded using 2m-1 products. Finally, any L-step orthogonaliz-
able code with minimum Hamming distance dH can be maximum-

radius decoded by a sequential code reduction decoder(4)

whose
first stage is an analog threshold decoder using dH products
and whose remaining stages are digital, provided that the
subcodes used in decoding are all capable of correcting dH-l or
fewer digital errors (which is almost always the case). We

also showed that maximum-radius decoding - however achieved -

is asymptotically optimum for the white Gaussian channel. More

15




recently, we have been able to extend our earlier results and
show that whenever it is possible to find a set of R parity
checks which all check the ith position, but no more than i
of which check any other position, then a one-step analog
threshold decoder will do radius-r decoding with r = —zl-ﬁ—I—T
(For orthogonalizable codes, R = dH-l and

4
«id - -E
r=3/d; = =)

2

Since f = cosm was clearly not an optimum choice, we ex-
perimented with other functions in an effort to understand what
makes a good demodulation function. We ran computer simulations
for the white Gaussian charnel using a variety of functions -
including cosm - with inconclusive results. The analog threshold
decoders consistently outperformed the corresponding digital
majority decoders, but a particular function would be better for
one code than for another, or would perform better at one signal-
to-noise ratio (SNR) than at another. It was not until we began
to consider the possibility of adaptive analog threshold de-
coding that the optimum function was found.

In the case of a linear binary (n,k) code, the optimum
soft-decision function (optimum in the sense that the probability
of bit error is minimized over any time-discrete memoryless

channel when the code words are equiprobable) is

_ 1-4(x)
i il 1+¢ (x)

where ¢(x) = Pr(x|1)/Pr(x|0) is the likelihood ratio. This
function is optimum when (1) all 2n-k parity check products are

used and (2) the products are weighted equally. We have been

16




able to generalize this result to any linear block or convo-
lutional code over GF(q)(l3).

The reader may have noticed that the function f(x) as given
is not an isomorphism from S to S'. We could easily make it so
by normalizing, but then the weights assigned to the parity
products would become functions of the SNR. When the function as
given is used, the contributions of the various parity products
are automatically scaled according to their reliability at the
SNR on the channel. At high SNR, the 2n-k parity products
contribute more-or-less equally, while at low SNR the only
signiricant contributions are from parity products which corres-
pond to minimum weight words in the dual code. It is interesting
to note that for the white Gaussian channel, the optimum function
approaches a [-1,+1] step function as SNR - «. Analog threshold
decoding would be mathematically equivalent to digital majorigy
decoding if the step function were actually used. This
illustrates very nicely the fact that digital decoding is a
special limiting case of this more general class of decoding -
demodulation functions.

The discovery of the optimum soft-decision symbol-by-symbol
analog threshold decoding algorithm is significant because the
complexity of the algorithm varies with the size of the dual
code and is thus inversely related to code rate. This decoding
method therefore is to high-rate codes what correlation and
Viterbi decoding are to low rate codes, which fills an important

gap in the arsenal of decoding techniques. But even more

L7




significant, perhaps, is the concept of soft-decision decoding
in the dual code domain itself. 1In classical code domain de-
coding, there is no graceful way to give up a small amount of
performance in order to reduce the complexity of the decoder.
For example, one cannot discard half of the matched filters in a
correlation receiver, or half of the microcomputers in a Viterbi
decoder. The effect on performance would be disastrous. This
is not so in the case of dual code domain decoding. If we were
to throw away, at random, half of the parity check products in
an optimum analog threshold decoder, we would not expect a
significant loss in performance. The reason for this is that
the dual code domain expansion of the decoding function is
essentially a Fourier series, and even a fairly severe truncation
of the series should result in no more than a small overall de-
gradation of performance, the loss being independent of the code
word transmitted. To support this view, we cite the results of

some very recent simulations carried out by CNR, Inc.(4l)

for
the (21,11) code on the white Gaussian channel. Reducing the
number of parity products from 1024 to 6 resulted in a loss of
less than 1 db at the bit error rate of 2 x 10_3,

Much remains to be done in this area, particularly on the
problem of suboptimum analog threshold decoding. We still do
not know what the optimum demodulation function is when a
proper subset of the available parity checks is used, or even if

the optimum function can be factored into an adaptive part,

which is a function of the SNR, and a fixed part which is a
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function of the set of parity check products to be used. How-
ever, the preliminary findings are certainly encouraging and we
expect that this line of investigation will continue to produce
results of theoretical and practical importance.

We now present, in detail, the new optimum symbol-by-symbol

decoding rule for linear codes.

3.2 The Optimum Decoding Rule

For convenience, we present the decoding rule for linear
block codes. The extension to convolutional codes is immediate
and will be obvious from the examples.

Let ¢ = (co,cl,...,cn_l) denote aﬁy code word of an (n,k)

' C o

j,n-l) the

linear block code C over GF(p) and ES = (céo,cgl,...
jth code word of the (n,n-k) dual code C'. A code word c is
transmitted over a time-discrete memoryless channel with output
alphabet B. The received word is denoted by r = (ro,rl,...,rn_l),
rj € B. The decoding problem is: given r, compute an estimate
ém of the transmitted code symbol Cn in such a way that the
probability that ém equals m is maximized. Other notation:

w = exp[2n/~1/p] (primitive complex pth root of unity);

Gij =1 if i = j and 0 otherwise; Pr(x) is the probability of x
and Pr(x|y) is the probability of x given y. Unless otherwise
stated, the elements of GF(p) are taken to be the integers

0,1,...,p-1 and all arithmetic operations are performed in the

field of complex numbers.
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DECODING RULE:

Set ém = s, where s ¢ GF(p) maximizes

the expression

n-1 p-1 -i(cfQ—té

i ; w J ml)

pn—k
e Pr(r,|i) | . (1)

p-1
Am(s) = § @ '
t=0 j=1 2=0 i=9

Theorem: Decoding Rule (1) maximizes the probability that

(Proof) We must show that choosing s to maximize Am(s) is
equivalent to maximizing the probability that Cn equals s given
the received word r. We do this directly by showing that

Pr(cm = s|r) = XAm(s), where )\ is a positive constant which is

independent of s. We first note that

Pr(cm=sl£) = y Pr(cir)
CeC,C. =8
~ m
= ) Pr(r|c) [Pr(c)/Pr(x)] . (2)
ceC,c. =8
< m
Since the code words of C are equiprobable, Pr(c) = p.k and

(2) becomes

bl 2, =<
Pr(c =s|r) = [p /Pr(r)] 1 Prigile) 60.(C'§m-5)' (3)

ceC =

where gm = (6 § ) is the vector with 1 in

mo’ ml""'ém,(n-l)
the mt position and 0 elsewhere. In terms of their finite

Fourier transforms,
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8 A R R e (4)
0’(E'gm 8) t=0
P (glg) =p " §  F(r,uwd’E (5)
K ueV
~-
where
F(r,u) = } Pr(rjvw="Y¥, (6)
veV
~*"n
u = (uo,ul,...,un_l) and v = (vo,vl,...,vn_l) any elements of

Vn’ the vector space of all n-tuples over GF(p). Substituting

(4) and (5) in (3) yields

Pr(cm=sl£)=lp-n-k—l/Pr(g)] ) } F(r,ww
ceC |ueVv

i i Pzl _
e " lerp)1 § W] Figw| T ow L
t=0 uev ceC

By the orthogonality properties of group characters, we know

that
pk 1€ vec"
y wi'f = (8)

0 otherwise

Applying (8) to (7) gives A=l
1 P

-st 4

w v F(g,gj te ) . (9)

8 P

Pr(c_=s|r)=[p " l/Pr(g)] )3
m

=0 j=1

t

Since the channel is memoryless, we may write (6) as
n-1 Uy vy n-1 p-1 -iu
F(g,u) = 1§ M Pr(r,|vy)w = ) Prir li)w
gevn 2=0 £=0 i=0

> (10)
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Substituting (10) in (9) yields

P" K [n-1 p-1 -i(c!,-ts ,)

e P7l _
Pr(c =s|g)=[p 4 l/Pr({)] T w°" " % ¥ 3 w jt " mi
t=0 j=1| 2=0 i=0
-
i) -n=-1
Pr(rzlx)J = [p /Pr(g)]Am(s) - 9. E.D.

As one might expect, the decoding rule takes a comparative-
ly simple form in the binary case: set S 0 if
Am(O) > Am(l) and ém = 1 otherwise. It is more convenient how-

ever to state the rule in terms of the likelihood ratio

¢y = Pr(rmll)/Pr(rm|0).

Substituting (1) into the inequality Am(O) > Am(l) yields

-k ;
" gl =i {al -8 .}
RO E M e 4) @
t=0 Jj=1 =0 i=0
n-k g
1 2 n-1 1 -i(c', -ts )
I 1=0)® 3 g 3§ =n ks iy
t=0 j=1 2=0 i=0
or
2% a-1 [ —cle=8 4
! 38 Pr(r, |0)+(-1) Pr(rg 1) | >0 . (11)
3=1 =0 |
n-1
Dividing both sides of (11) by I Pr(rEIO) and using the
L=0
definition of the likelihood ratio, we have
n-k
2 n-1 [ -c!' =6
8 | a1y 3t W
j=1 1=0 | L > 8 . (12)

Then dividing both sides of (12) by the positive quantity
n-1 r

n  1+¢
g=0 | *
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=« =0
e I PO I L

yu = f
j=1 =0 *hPy
Finally, using the identity
~c'!, =6 ,
1o, (-1 I ™ [aoe | ©50%me
1+¢2 ]+¢E

where '@®' denotes modulo 2 addition, we obtain the

BINARY DECODING RULE:
Set ¢ =0 if
m

c' @6
2";k n=l [ l-¢,| % ™
n Y > 0 (13)
je1 o '| **9,

and - 1 otherwise.

We remark that up to this point we have ignored the
question of how one retrieves the decoded information symbols
from the code word estimate é. This could be a problem because,
when a symbol-bg-symbol decoding rule is used, é is not in
general a code word. In the case of block codes, we could in-
sist that the code be systematic without loss of generality,
but there might be some objection to this restriction in the
case of convolutional codes. As it turns out, this is not a
problem since the decoding rule is easily modified to produce
estimates of the information symbols directly if need be.

Simply note that every information symbol a  can be expressed as

a linear combination, over GF(p), of code words symbols cm,
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i,e. a = %bmlcﬁ’ b g €

N
goes through intact if we substitute fbm”c

§ . Iin
mye

(1).

EXAMPLES:

(a)

AN

9
) L

(7,4) Hamming code

GF (p), and that the proof of the theorem

for ¢ and b ., for
m mi

We will illustrate the decoding rule for the received

symbol Lo

Since the (7,4) code is cyclic,

rl,...

may be

decoded simply by cyclically permuting the received word r in

the buffer store.

The Binary Decoding Rule (13)

c =

o™ 0 iff _f

csﬂeéo

in this case becomes

(14)

The parity check matrix H of the (7,4) ccde and its row space

C' are shown below.
1110100 (a)

H=)0111010 (b)

¢'0°1°2 L &l (c)

Let Py = (1-¢Q)/(1+¢2).

- Ui Chei- St
o B0 PP
35 B X

Rty o kvl o
1 6 8 3.4
S Desk ik
S
o T PO RR |

= = o O

Then substituting (15)

24

e © O O

(a)
(b) (15)
(a®b)

(c)

(a®c)

(b@®c)

" (a®b@c)

into (14) gives




+ +

Cy = 0 Aff °0

+ P

. PaPgPg * PyP3Pe + P3P 4Pg

0 .

P1P2P4
*- 0

(16)
0P1P2P3Ps * PgPaPaPyPg * PyPyP4PgPg >
The decoder configuration corresponding to (16) is shown in
Figure 1.

The reader will probably recognize the similarity between
the decoder of Figure 1 and a one-step majority decoder using
non-orthogonal parity checks(3l). And in fact if the "soft
decision” function (1-¢(x))/(1+¢(x)) were replaced by the "hard
decision" function f(x) = -1 if x > % and +1 otherwise, and if
the last three parity checks in the decoder were deleted, then
the resulting circuit would be mathematically equivalent to a
conventional one~step majority decoder. Parity checks in the
circuit of Figure 1 would be computed by taking products of +1l's
and -1's, rather than by taking modulo 2 sums of 0's and 1's

as would be the case in a conventional digital decoding circuit.

(b) (4,3,3) convolutional code

We now illustrate the decoding rule for the received symbol

Iy using an (no,ko,m) = (4,3,3) convolutional code (from

Peterson and Weldon(42), page 395).

The Binary Decoding Rule (13) in this case becomes
.

L~ 1
1_¢9 \ ]?, (V)
oy J >0 . (17)
\ P |

€p=0ife |
j:l =0

—

Of course, there are only a finite number of nonzero terms in
(17), the number depending upon the length of the transmitted
code sequence. The initial portions of the parity check matrix

H of the (4,3,3) code and its row space C' are shown below.
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EEEE Y B (a)
H = 10101313130 ... (b)

110016011110 ... Ic)

0
A W S g " (a)
1 0X031F 1 11 G .. (b)
8.1 1 A0 L. (a®b)

€2 1 26061 ¢ Y oL 11O e K} (18)
00 %11010%X11310 ... (&)
0rl1o00l1loli1lill6... (béc)
1001010111110 ... (adbec)

As before, let Py = (1-¢£)/(1+¢2). Then substituting (18) into
(17) gives

~

G " U AL By Fpypang * pyigseRghy *

+ 00010304050607 £ eve > 0 (19)
The decoding diagram corresponding to (19) is shown in Figure 2.
This takes the form of a trellis diagram for the (4,1,3) dual
code C' with the 030 positionis in the branch labels complemented.
(In general, to decode ro the cém positions would be comple-
mented.) Note that the all-zero state acts as the accumulator

for the terms of (19).
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Since a different storage unit must be used for each
symbol to be decoded, the amount of storage for this type of
decoder grows linearly with the length of the transmitted code
sequence. This is also true of a Viterbi decoder, which must
keep track of its path-elimination decisions.

We now restrict our attention to linear binary block codes
with equiprobable code words transmitted over the additive white
Gaussian noise channel by antipodal signalling and present
asymptotic expressions for the probability of bit error, PBIT'
for both high and low SNR.

3.3 Asymptotic Results for the WGNC

The optimum bit-by-bit decoding rule for the mth digit of
an (n,k) linear binary block code C is: set ém = s, where
s € GF(2) maximizes P(c_ = s|r). Here ¢ = (cgrev-vc _q) is the
transmitted code word, r = (ro,...,rn_l) is the received word,
and ém is the decoder's estimate of the transmitted code digit
S The probability of bit error is then given by

Pare = PIBlE, = o |£) = (e, #& 12N .

The derivation of our results is simplified by assuming that the
all-0 code word is transmitted. It is easily seen that the
assumption is valid for the case under consideration because of
the group property of the code, which renders the view of n-
space from one code word the same as from another, and because
of the symmetry of the noise, from which it follows that noise

vector e = (eo,...,en l) occurs when ¢ = (co,...,c ) is trans-

n-1
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[ =
mitted with the same probability that e' = (-1 % _,...,-1 N7l

0’ i n-1)
occurs when the all-0 code word word is transmitted.
When the all-0 code word is transmitted, the mth component
of the received word is
r = E ey
m m
where E is the signal energy per channel bit and en is a noise
sample of a Gaussian process with single-sided noise power per
hertz No. The variance of el is NO/Z and the SNR for this
channel is y = E/NO. In order to account for the redundancy in
codes of different rates, we will use the SNR per transmitted
bit of information, T ™ Eb/N0 = yn/k = Y/R, in our derivations.

In terms of Yb' we can write the likelihood ratio as

(r_+/E) 2 (r -/E)
@(rm) = exp(--——N————-)/exp(-—N———)
0 0
= exp(-4rm/y7N0) = exp(-4rm/Ryb7No) . (1)

The mth component of the receive word r will be decoded

incorrectly if and only if

Ple, = 0|g) < Ple, = 1lE} ,

where r = (/E + eor...,/ﬁ + en_l). In other words,

P R gl 3O Mgt (2)
BIT : S ke
gcso gasl
where Si ={c ¢ C}cm =i}, 1 = 0,1. Since the channel is memory-

less, and the code words are equiprobable (so that we may invoke

Bayes' formula), (2) may be written as
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; n-1 n-1
P = P[ ) L iFiz,ley y I Pir,le,)) . (3)
BES P T " T
0 1
n-1
Since T P(r,|0) > 0, we can rewrite (3) in terms of the like-
e=0 :
lihood ratio as
n-1 ) n-1 )
P =P[ § B ¢ilx,) %50 Ly i e 3 ¥ » (4)
BIX ceS, 2=0 5 ~ ceS, =0 k
~=0 w
Substituting (1) into (4) yields
Porp = PL ] expl-r-c 4Ry, /Nj) < ) expl-r-c 4/Ry /Ny)]. (5)
CeSy ceSy

We now fix NO and vary Eb

PBIT as vy decreases (denoted by ¢.26 (PBIT)) and as Yp increases
b

to obtain the asymptotic behavior of

(denoted by A.B. (P
Yb—bao

BIT))'

Low SNR Case

For x small, exp x * 1 + x, so for Yp in a small

neighborhood of zero we may write (5) as

¢‘36(PBIT) ~ P[czs (1~r-c 4/Ryb7N0) < czs (l-r-c 4/Ryb7No)]. (6)

b 0 3

By [42, problem 3.5], (6) can then be written as

Q'Eb(PBIT) ~P[ )] ~-r-.c 4/Ryb7N0 < } -r-c 4/Ryb7N0] ’
b ces0 cs:S1

which implies that

By W) = ¥1,)} B> 3§  zro] & (7)
yb*O 81T ceS0 ces1
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S0 is a linear binary (n,k-1l) code, so if the vectors of SO are

arranged as rows of a matrix MO' then each column will contain
all 0's or else 2k-2 0's and Zk-2 l's. Then if we arrange, as

rows of a matrix Ml’ the vectors of set Sl’ the columns of Ml

which correspond to all-0 columns of M, must contain all 1's,

0
and all other columns of Ml will contain 2k—2 0's and 2k—2 1l's
Using this fact, we can write (7) as
g
¢'56 (Pose) = P[sz  FRae | A
b e ih
where jl""’j6 are the columns of MO which contain all 0's.
Since r, is a normally distributed random variable with mean
vE and variance NO/Z, and since the noise is white,
jg o o]
Pl 3 ¢ % Qi = . ‘f. exp(-x2/2)dx = Q(v26RY,)
=3 2 Y v2m b
1 /zeayb

The desired asymptotic expression for low SNR is thus

A.B. (P ) = Q(V28Ry,) .

BIT
Yy 0

We note that if C is the binary (n,l) code, then R = 1/n,

8 = n and
A.B. (P ) = Q(Vsz) ’

which is the probability of bit error when no coding is used.
Also, we note that if the dual code of C has minimum Hamming
distance greater than 2, then 6 = 1 and

A.B. (P ) = Q(VERYb) v

BIT
Yb*O
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which is the probability of bit error before decoding.

High SNR case

Since the all-0 code word is a member of S.,

0
) exp(-r-c 4/RY,/N.) > 1
oo o b” 0
CES
~=0
in (5). In the case r-c > 0 for all ¢ ¢ Sl'
Yy expl(-r-c 4/RYb7N0) ~ 0
gcsl
for large values of Yy Thus A.B. (PBIT) is upper bounded by
Y, >
A.B. (Poprnt S Pl U p-gx0) < I  Plrgc < 0)
Yb o gesl geSl

We now show that this upper bound is tight for sufficiently

large values of Y i.e.

A.E; (Prw! Xs Blprre < 01 .
b £€5
Let ¢, and <, be two code words of C. First note that
r'c, = e'g; + vEw(g,) and £'c, = e-c, + /Ew(g,), where w(g) is

the Hamming weight of c. Without loss of generality, we assume
that w(gl) ok w(gz). Let e be the solution to the problem of
minimizing e-e subject to the constraints €<y

be the solution to the pro-

+ VEw(g;) <0

and g-c., + /Ew(gz) < 0, and let e

7. 2

blem of minimizing e-e subject to e-c, + /Ew(gl) <0y Itim

L

e, = §2°§2 = gz, 2 > 0, from which it

1 nd
follows that for sufficiently large values of E(and thus Yb),

easy to show that e

Pir.oy <1} 3% Piree, < Wig.g, <0 . (8)
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But then
PIv pec) » § Plrg<®) ,
€

gESl
since, with high probability, only one of the inner products
r-c will make a significant contribution. Again by (8), we may

conclude that for sufficiently large values of Yp'

N2 ~ U . :
A Em (¢ P(CES r-c < 0)
' 2E=y

Thus
A.B. e ch P(r-c < 0)
b L5y

Now we know that
P(xrg < 0) = /%; M/‘ exp(-x2/2)dx = Q(VZRW(Q)Yb) '
/2Rw(g)Yb

from which it follows that

- . = .

? B. Py czs Q(V2ZRw(c) Y,)

b 1
Let L be the minimum weight of code words in S1 and N(wm) the
number of code words of weight W Since only these code words
make a significant contribution to the sum, the desired asympto-

tic expression for high SNR is seen to be

?.E; (PBIT) = N(wm) Q(/2meyb) 5
If the code is cyclic with minimum distance d, then " d
and
?.E; (PBIT) ~ N(d) Q(/2Rdyb)
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Section 4

PARITY CHECK SET CONSTRUCTIONS

It is known(39)

that any digital decoding function for a
linear binary code can be realized as a weighted majority of
nonorthogonal parity checks. An open question of practical
interest is: For an (n,k) linear block code, how do we find a
small subset of the 2n-k available parity checks that is capable
of correctly decoding the first received bit in spite of any
pattern of t or fewer errors? In this note we present two
approaches to constructing such subsets. The first approach,
which applies to cyclic codes only, is based on "squaring", an
automorphism of any binary cyclic code. The second approach,

which is applicable to any linear binary code, is based on a

"measure of reliability".

THE SQUARING APPROACH*®
Let Rn be the ring of polynomials modulo x"-1 over GF (2).
A cyclic code C of block length n is an ideal of R . The

generator of C, g(x), is a divisor of >

Let I, denote the permutation k + 2k (mod n) of

2
I % R H2 induces the "squaring" automorphism of Rn
Hz(ngl a.xi) = n;l a.x2i, a; & GF(2)
i=p * i=0 * *

Since the square of a multiple of g(x) is also a multiple of
g(x), a binary cyclic code is invariant under the operation of

squaring, and moreover the square of a code word of Hamming
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weight w is another code word of weight w. The set of all code
words obtained by squaring a code word v is called the "square
set of v".

Let El""’Ei 2

set of position indices where the code word v ¢ C has ones.

denote the cycles of [, and let v denote the

Define a function f(v) = (nys...,n,), where n, = ]Ei o vl. It

(43)

is easily shown that f(v) = f(gz) for any v € C. A straight-

forward application of this property yields the following theorem

on M, the incidence matrix of the square set of y:

~

Theorem:
Let
X

R g

2 (m_l)
v

I o
be the incidence matrix of the square set of v and suppose

f(v) = (nl,...,nl), where nj = IEj n v|l. Then the columns of

Mv corresponding to the components of Ej each contain exactly

mn .

B l's, where m is the multiplicative order of 2 (mod n).
j

Example 1

Suppose n = 7. Then E, = {0}, E2 = {1,2,4}, Ey = 13:8:5%
Let C be the (7,6) code and v = {0,1}. Then v2 = {0,2}, v4 ={0,4},
v8 = v and f(v) = f(gz) = f(!4) = (1,1,0). The incidence matrix

36




of the square set of v is

Now let C be the dual of the code we wish to decode and let
v and v' be code words of C with 'l' in the first position.
Assume f(v) = (l,n2,...,nl) and f(v') = (l,né,...,n&) and that
f(v) # £(v'). 1If it is possible to find integers a > 0 and
b > 0 such that anj + bné <X for j = 2,...,2, then the parity
checks of the square set of v, replicated a times, can be
combined with the parity checks of the square set of v', re-
plicated b times, to obtain a nonorthogonal parity check set in
which the first error position e, is checked by all of the parity
checks, but no other position is checked by more than !} parity

checks.

Example 2 (17,9) code

The (17,9) double-error-correcting quadratic residue code
is not L-step orthogonalizable. However, this code can be
weighted-majority decoded in one step using 15 nonorthogonal
parity checks as we now show.

For n = 17, E, = {0}, E, = {1,2,4,8,16,15,13,9} and

Ej = {3,6,12,7,14,11,5,10}. Two code words of weight 6 in the

(17,8) dual code for which f(v) # f(v') are:

{0,1,3,6,8,9} f(v)

I

v (1,3,2)

10,4,5,6,7,11) £iv*)

v' (1,1,4) .
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If 'a' is the weight (number of replications) assigned to the
square set of v and 'b' is the weight assigned to the square set
of v', then the following equations must be solved for a,b, and

A
3a + b = 2

2a + 4b = A .
The simplest solution is a = 3, b =1, » = 10. There are 8
words in each square set and each word checks the first position.
Applying Ng's bound‘4%) with r = 3(8) + 1(8) = 32 and * = 10, we
see that it is possible to decode the first received bit in

spite of any pattern of t = r+;;l = 2 or fewer errors. This

nonorthogonal parity check set and its associated weights are
shown in Table 1. Note that since the minimum weight of any
syndrome of an error pattern with €y = 1 is 2 greater than the
maximum weight of any syndrome of an error pattern with eq = 0,
the last check may be discarded, thereby reducing the number of

nonzero parity checks required to 15.

THE MEASURE OF RELIABILITY APPROACH:

Another approach to selecting a parity check set is to
define a measure of the "reliability" of a parity check and
then use this measure to select a subset of the 2n—k checks
available. One such measure of reliability is the absolute value
of the number of times a parity check is "right" minus the number
of times it is "wrong" over the set of error patterns of interest,
where we say that a parity check is "right" for an error pattern

e = (eo,...,en_l) if the check sum is equal to e otherwise it

0;
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is "wrong". The error patterns of interest in the examples

to follow are those of weight t or less, where t is the
guaranteed error-correction capability of the code. The general
idea is to use the parity checks with the highest reliability
coefficients. When a parity check is "wrong" more often than it
is "right", we usually use the complement of the check (dencted

by a minus sign assigned to the weight).

Word in the (17,8) Dual Code Assigned Weight
000000OO0OO0DOOOGOOOOODO 10
11010010110000000 3
1110001000001 0001 3
101010010000210010 3
1900610010808 0611008 =
1000000012021 00191 3
110001000001 00011) 3
10100100001001010 3
10011000011 0061000 3
10001111000100000 1
1000010010101 0100 1
100100010011 00001 1
10010110000000110 i
1000001000111 19000 1
1001010101001 0000 1
11000011001000100 1
1¢1310000600012X01900 1

Table 1. Parity check set used to decode the (17,9) code

Example 3 (15,5) code
The (15,5) triple-error-correcting cyclic Reed-Muller code

can be majority decoded in two steps using 42 orthogonal parity
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(22,29)

checks . We now show that this code can be weighted

majority decoded in one step using 31 nonorthogonal
The (15,10) dual code has the following weight

Code word weight 0 4 6 8 10

Number of code words L . 05 - 280 < 435 168

The error patterns of interest in this case are the

3 or fewer errors, and the reliability coefficients

parity checks.
distribution:
L2
35
patterns of

of the parity

checks with respect to this set of error patterns are as given

in Table 2. The zero parity check is the most reliable, the

weight-12 parity checks which do not check e, are the second

0

most reliable, and the weight-4 parity checks which check e

0

are the third most reliable. (We use the complements of the

second set of check sums since they are "wrong" more often than

they are "right".) The nonorthogonal parity check set formed

from these three sets of checks and the associated weights are

shown in Table 3. (A negative weight indicates that the

complement of the check sum is to be used.) It is possible to

discard the first four nonzero checks, thereby reducing the

required number of nonzero parity checks to 31.
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Assigned Weight

Dual Code

(15,10)

Words 1in the

o I e e e B B B B B B B e B B e B B B e e R e R e e e N e e R e e R R R R |
S S N e SR N

COO0OO0O0OHO0OO0O0HOO0OO0OO0ODO0OO0OHOO0OO0OOHOOOOHMHMHAO A
COO0OO0O0O0OHHOOOOOOOODOOO0OHMOHOOOHMOAOHAMMAHAOM~
CO0OO0O0OMOO0OO0DO0O0O0O-MOHOO0OO0OO0OOHOOOOHOOOA A"~ m~0O
OCO0O0O00O0OHOOOHOOOOHMOO0OO0OOOHOOOHOOHHMHH~~MO
O~~0 000000000000 HOOMOOOOHOHOO MM ™M Orm
COO0O0CO0OMOO0OO0OO0OO0OMHO0O0OO0OO0OO0O0OHMOHMNOOHOOHAHMH-EH~O~
QOO OO0 COO0O0CO0O0OOCO4100O0HMOC0COOOCAOA~AOAO MM m™~-;
COMOO0OO0O0OO0O0O0OHOO0OO0OO0OO0OOHOOHOO0OOHHOOO A~ ~Om~
COO0OO0OHO0OO0OO0DO0OHOOO0OOHMOHODODOHOODODHOOOOOHAA~AO~~
OO~ O0O00O0OHOOCOOHOO0OCOOOHNMOOOOOO A Ormrdr
OO0 O0O0OO0OO0O0OHOOOHOO0OOHAMHMMHMOOOCOOOOOO ™ r{rremd e
OCO0OFMO0O0O0OHO0O0O0CO0OHH 1000000000000 OAAO A~~~
Or1000COAA~rdr{0O0 000000000000 OO0OHOH-
OrArdArArd 4000000000000 000O0DO0O0O0COOCOCOHMH -~
OrdrdArdrArdrArdArdrArdrdA~"A~ A4~~~ ~A~A~A~A~A~O0O 00 O0O0O0O

Parity check set used to decode the (15,5) code

Table 3.
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Section 5

CONCLUSIONS

As pointed out in Section 2, we are now in a position to
translate all of the digital decoding algorithms of classical
algebraic coding theory into analog decoding algorithms via
the isomorphism between the additive S-domain and the multipli-
cative S'-domain. There are some enticing experiments begging
to be conducted. For example, how well would a multiplicative
BCH decoding algorithm perform when applied to an unquantized
received word? How are we to interpret such a decoding algorithm?
The very concept of BCH codes and their decoding algorithms is
based on the assumption that a digital error vector of no more
than t nonzero components has been added to the code word in
the finite-field domain of the code. From the viewpoint of
classical algebraic coding theory, it makes no sense to talk
about error vectors with analog components. Yet we know that a
multiplicative BCH decoding algorithm will correct some set of
error vectors. The only question is: what set? (Actually, it
is probable that a raw, unmodified multiplicative BCH decoder
would decode only those digital errors that it would have de-
coded in the additive domain, since a BCH decoder (unlike a
threshold decoder) may elect not to decode a received word. But
once in the multiplicative domain, a great many "loosening up"
modifications suggest themselves. One might consider general-

izing the idea of "root", for instance.)
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It is also quite possible that there exists an analog de-
coding algorithm (and a new class of codes, perhaps?) which is
analogous to BCH decoding, but which is designed to correct only
those error vectors which fall within a continuous sphere of
Euclidean radius t, rather than being designed to correct only
those digital error vectors which fall within a discrete "sphere"
of Hamming radius t. Of course, the ability to derive analog
decoding methods which are analogous to, rather than direct
translations of, classical digital decoding algorithms requires
an understanding of the principles of decoding in the multi-
plicative domain which we do not yet possess.

In addition to new analog decoding algorithms obtained by
direct translation of eiisting digital algorithms, or construct-
ed by analogy with existing digital algorithms, there is the
possibility of devising entirely new decoding methods which have
no counterpart in classical algebraic coding theory. This
possibility stems from the new algebraic properties acquired
when we move from the classical additive domain to the multi-
plicative domain. For example, in this new domain a digital
decoding function can always be extended to an analytic function.
This means that all of the techniques of real and complex analysis
become available. One thinks immediately of hill-climbing tech-
niques which will, with the unquantized received word as the
starting point, converge to the nearest code word. We have in
fact tried this, and our first experiment with a convergence

technique had an outcome which we should have been able to
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predict.

In the course of our work on the optimum symbol-by-symbol
decoding algorithm described in the previous section, we asked
ourselves how we could modify the algorithm to do optimum word
decoding (and thus be equivalent to correlation and Viterbi
decoding). We designed an experiment for the white Gaussian
channel in which we fed back the unquantized output of the
optimum symbol-by-symbol decoder to the input (after the initial
processing of the unquantized received word) and then iterated
the process until it stablized. To our delight, the contents
of the fed-back decoder did indeed converge to the nearest code
word. We then became interested in the speed of convergence
and found that by "fooling" the decoder* into thinking that the
SNR on the channel was higher than it actually was, the rate of
convergence was increased. In the end we found that by pro-
viding the decoder with a sufficiently high artificial SNR, the
nearest code word was always produced on the first pass. 1In
other words, iteration was not necessary! 1In retrospect, it is
obvious that this should be the case. After all, one need not
derive the SNR for correlation or Viterbi decoding, and besides,
the optimum symbol-by-symbol decoding algorithm uses all of

the available parity checks, which should have led us to suspect

*

"Fooling" the decoder consists of using an artificially high or
low SNR when computing the likelihood ratio. This has the
effect of changing the shape of the (adaptive) soft-decision
decoding function.
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that nothing further would be gained by iteration.

What this result does suggest is that there should be a
way to trade off speed of convergence and hardware complexity.
If all of the parity checks are used, the hardware component of
complexity is maximized and the time component is minimized. If
too few parity checks are used, the decoder does not converge to
the nearest code word, and in fact may not converge to a code
word at all. Based on experience in other areas where con-
vergence techniques are widely used, we expect to find an
operating range in which the hardware and time components of
complexity can be traded off (with a further trade-off involving
error probability), and that the optimum operating point for
most applications will involve iteration. We consider this
line of investigation to be one of the most exciting in the
period ahead. We might note here that a similar idea has been

suggested by Chase(45)

who plans to investigate a "cascade"
decoder (a soft-decision decoder following by a hard-decision
decoder) .

In Section 3, we presented a symbol-by-symbol decoding rule
for linear codes which is optimum in the sense that it minimizes
the probability of symbol error on a time-discrete memoryless
channel when the code words are equiprobable. A comment or two
on the relationship between this technique and correlation/
Viterbi decoding would seem to be in order.

First, although the performance of correlation/Viterbi

decoding is inferior to the performance of the decoding rule
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presented here on a symbol-error basis, and vice versa on a
word-error basis, some preliminary simulation results for the
white Gaussian channel suggest that the two approaches are very
close in performance on either basis. Symbol-error-rate is
generally considered to be a better measure of performance than
word-error-rate, especially in the case of convolutional codes,
and this would seem to give a slight edge to the decoding rule
presented here. On the other hand, correlation/Viterbi decoding
is applicable to nonlinear as well as linear codes, which might
be an advantage in some applications. Our present feeling is
that for all practical purposes the two approaches give virtually
the same performance.

When we turn to the question of complexity, however, there
is a considerable difference between the two decoding techniques.
Correlation/Viterbi decoding is only practical for low rate or
short codes whereas the symbol-by-symbol decoding rule is only
practical for high rate or short linear codes. We are fairly
well convinced, and the reader may be able to convince himself
by studying the examples in Section 3.2, that the complexity of
the symbol-by-symbol decoding rule for an (n,k) linear code is
comparable to the complexity of a correlation/Viterbi decoder
for the (n,n-k) dual code. This is fairly easy to see in the
case of linear block codes, but not so obvious in the case of
convolutional codes since there are so many options and pro-
gramming tricks to be considered. The authors, however, are

firm believers in the coding-complexity Folk Theorem: "The
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complexity of any function defined on a linear code is com-
parable to the complexity of (essentially) that same function
defined on the dual code". (In fact, it was the unsatisfying
lack of a soft decision decoding method for high rate linear
codes that was "dual" to correlation/Viterbi decoding that
motivated the research reported here.) If our intuition is
correct, then the symbol-by-symbol decoding rule and correlation/
Viterbi decoding should be of comparable complexity for rate 1/2
codes. We remark that the decoding rule for linear codes over
GF (p) can be generalized in a straightforward fashion to linear
codes over GF(pm) by using the generalized finite Fourier trans-
form of [46, pg. 367].

For very high SNR, the asymptotic expression for bit error
probability derived in Section 3.3 is the same whether optimum
bit-by-bit decoding or maximum-likelihood word decoding
(i.e. correlation) is used. The reason for this is easily seen
intuitively. For s with high probability the only time
a decoding error occurs using either scheme is when the received
word lies very nearly on a straight line between the trans-
mitted code word and a "nearest neighbor" code word, slightly
closer to the neighbor. 1In either case, the pattern of errors
coincides with the positions in which the transmitted code word
and the neighbor differ. This result tends to support the

(13)

conjecture that correlation decoding and optimum symbol-

by-symbol decoding give, for all practical purposes, the same
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performance on discrete memoryless channels.

Finally, we conjecture that the one-step weighted majority
decoders for the (17,9) and (15,5) codes derived in Section 4
to illustrate the two parity set construction methods are in
fact minimal decoders in the sense that they use the fewest
possible parity checks for t-error-~correction. It is interesting
to note: (1) that in the (17,9) decoder, parity checks of equal
reliability are assigned different weights, and (2) that it is
apparently necessary to use the complements of consistently
"wrong" parity check sums to obtain a minimal decoder for the
(15,5) code. It is our feeling, however, that these are "quirks"
related to digital t-error-correction, and would probably not

carry over to soft-decision decoding.
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BASE UNITS:
Quantity
iength
mass
time

electric current

thermodynamic temperature

amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:
Acceleration

activity (of a radioactive source)

angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

METRIC SYSTEM

Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

Multiplication Factors

1 000 000 000 000 = 10"

0.000 000 001
0.000 000 000 001

1 000 000 000 = 10°
1 000 000 = 10*
1000 = 10°
100 = 10?
10 = 10"

=10""
= 10~?
= 10~"
=10"*
= 10~°
=10~ "

0.000 000 000 000 001 = 10~ '
0.000 000 000 000 000 001 = 10-'*

* To be avoided where possible.

SI Symbol

m

kg

s

A

K

mol

cd

rad

sr

F

S

H

A"

Vv

J

=

Hz

Ix

Im

Wb

T

A

w

Pa

C

]

Pa

v

)
Prefix
tera
Rige
mege
kilo
hecto*
deke*
deci*®
centi®
milli
micro
neno
plco
fomto
stto

Formula

m/s
{disintegration)/s
rad/s
rad/s
m
kg/m
A-slV
AN
Vim
V-s/A
W/A
VIA
WA
N-m
JK
kg-m/s
(cycle)/s
Im/m
cdm
cd-sr
A/m
Vs
Wb/m
Jis
N/m
As
Nm
Wisr
Jkg-K
N/m
Wim-K
mis
Pas
m/s
WA

m
(wave)m
N-m

SI Symbal

o
s~czsE3°agT* IS
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